
Modular Programming Techniques for Distributed Computing
Tasks

Anthony Cowley, Hwa-Chow Hsu, Camillo J. Taylor

GRASP Laboratory
University of Pennsylvania, Philadelphia, PA, USA, 19104

ABSTRACT

This paper describes design patterns used in developing a software
platform for mobile robot teams engaged in distributed sensing and
exploration tasks. The goal of the system presented is to minimize
redundancy throughout the development and execution pipelines by
exploring the application of a strong type system to both the
collaborative development process and runtime behaviors of mobile
sensor platforms. The solution we have implemented addresses both
sides of this equation simultaneously by providing a system for self-
describing inputs and outputs that facilitates code reuse among
human developers and autonomous agents. This well-defined
modularity allows us to treat executable code libraries as atomic
elements that can be automatically shared across the network. In this
fashion, we improve the performance of our development team by
addressing software framework usability and the performance and
capabilities of sensor networks engaged in distributed data
processing. This framework adds robust design templates and
greater communication flexibility onto a component system similar
to TinyOS and NesC while avoiding the development effort and
overhead required to field a full-fledged web services or Jini-based
infrastructure. The software platform described herein has been used
to field collaborative teams of UGVs and UAVs in exploration and
monitoring scenarios.

KEYWORDS: sensor network, distributed computing,
software design

1. INTRODUCTION

As efforts to field sensor networks, or teams of mobile
robots, become more ambitious [5], [11], [4],
communication constraints rapidly become the
bottleneck both in the development effort and execution
environment. From a development standpoint, human
networking becomes clumsy as team sizes grow, putting
team communications at a premium. Therefore, effort
should be spent to optimize away the time developers
must spend explaining things to each other, specifically,
how to write code that has already been written or how
to reuse existing code. If this aspect of collaborative
development is not explicitly addressed, the team runs
the risk of either losing the ability to reuse code, due to a
lack of shared understanding, or drastically curtailing

productivity by devoting excessive time to
documentation efforts. Ideally, each developer’s efforts
will be documented extensively enough for others to
easily reuse the existing code without placing an
undesirable documentation burden on the original
developer.

 The desire for software agents to autonomously
exploit existing code is a subtly parallel goal. Should an
agent be able to specify its requirements, it ought to be
able to identify any existing code that would meet this
need. This applies both in the sense of agents
discovering new sources of data, and that of interactive
data processing requests. We wish to field a sensor
network wherein one sensor can tap into a potentially
live data stream without any a priori knowledge of other
nodes or their capabilities, while also giving each node
on the network the ability to ask questions that require
the processing of large amounts of data. In the first
case, we need to give our agents the ability to identify
the types of data being exported by other agents. This is
addressed by having communication endpoints describe
the data they trade in. The latter case involves not only
finding the correct type of data, but also sending an
active query to the data rather than saturating the
network by bringing the data to the query. Such
behavior requires descriptions of data sources and sinks,
as well as the ability to move, command, and control
executable code across the network.

2. IMPLEMENTATION

A crucial aspect in the development of this framework
design philosophy is the relationship between the new
software and that which it is built upon. We chose to
develop our high level environment on top of an already
full-featured platform. In our case, this platform was
Microsoft’s .NET technology, which includes a strong
type system in the .NET CLR (Common Language
Runtime), an object-oriented language in the form of

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
Modular Programming Techniques for Distributed Computing Tasks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Pennsylvania,GRASP Laboratory,Philadelphia,PA,19104

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Proceedings of the 2004 Performance Metrics for Intelligent Systems Workshop (PerMIS ?04),
Gaithersburg, MD on August 24-26 2004

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

C#, and many varieties of network functionality in the
.NET Class Library. Our design then focused both on
what functionality we wished to add and that which we
wished to remove. Simply put, we want to impose some
structure on our developers that is not inherent to C#,
.NET, or any existing platform. This structure is a
fundamental part of the ROCI (Remote Objects Control
Interface) [6], [9] philosophy, and is imposed on the
ROCI developer as a form of design control that we
believe adds a level of reliability to the resultant system.
By imposing a prescribed design on developers, we are
better able to isolate potential weaknesses and build in
error detection and handling functionality.

 ROCI itself is a high level operating system useful
for programming and managing sensor networks. The
core control element in the ROCI architecture is the
ROCI kernel. A copy of the kernel runs on every entity
that is part of the ROCI network (robots, remote
sensors, etc.). The kernel is responsible for handling
program allocation and injection. It allows applications
to be specified and executed dynamically by forming
communication connections and transferring code
libraries to the nodes as needed. The kernel is also
responsible for managing the network and maintaining
an updated database of other nodes in the ROCI
network. In this way, ROCI acts as a distributed peer-
to-peer system. Nodes can be dynamically added and
removed from the network, and information about these
nodes and the code running on them is automatically
propagated throughout the system without the need for a
central repository.

 The control functionality needed by such a kernel is
made possible by self-contained, reusable modules.
Each module encapsulates a process which acts on data
available on its inputs and presents its results on well
defined outputs. Thus, complex tasks can be built by
connecting inputs and outputs of specific modules.
These connections are made through a pin architecture
that provides a strongly typed, network transparent
communication framework. A good analogy is to view
each of these modules as an integrated circuit (IC) that
has inputs and outputs and does some processing.
Complex circuits can be built by wiring several ICs
together, and individual ICs can be reused in different
circuits. ROCI modules have been developed for a wide
range of tasks such as: interfacing to low level devices
like GPS units and cameras, computing position
estimates based on GPS, IMU and odometry data,

acquiring stereo panoramas, platform motion control,
online map building and GPS waypoint navigation.

 ROCI modules are further organized into tasks
(Figure 1). A ROCI task is a way of describing an
instance of a collection of ROCI modules to be run on a
single node, and how they interact at runtime. Tasks
represent a family of modules that work together to
accomplish some end goal – a chain of building blocks
that transforms input data through intermediate forms
and into a useful output. A task can be defined in an
XML file which specifies the modules that are needed to
achieve the goal, any necessary module-specific
parameters, and the connectivity between these
modules. Tasks can also be defined and changed
dynamically by starting new modules and connecting
them with the inputs and outputs of other modules.

Figure 1. A typical ROCI task: a collection of behavior
modules with loggers connected to specific pin
connections. A human operator interfaces with the logs
via the browser, which may be running on a different
machine from the task.

 The wiring that connects ROCI modules is the pin
communication architecture. Pin communications in
ROCI are designed to be network transparent yet high
performance. Basically, a pin provides the developer
with an abstract communications endpoint. These
endpoints can either represent a data producer or a data
consumer. Pins in the system are nothing more than
strongly typed fields of the module class, and so are
added to modules with a standard variable declaration
statement. Pin communication allows modules to
communicate with each other within a task, within a
node or over a network seamlessly. The base Pin type
will optimize the connection based on whether or not it
is local and handle all error detection and handling,
bandwidth utilization requirements, and optional
buffering. The type system enforces pin compatibility at

run time which makes it impossible to connect inputs
and outputs of incompatible types.

 This compatibility evaluation is done in an object-
oriented fashion such that, when necessary, output data
will be transparently up-cast before being transmitted to
a data sink. This negotiated compatibility allows for
what we call “blind polymorphism,” which does not
require that both nodes have all the same types loaded.
That is to say, if data can be cast up its inheritance
hierarchy to the type that the data sink requires, then this
cast will be done on the source side of the connection,
thereby not requiring that the sink be aware of the
inherited type.

 Importantly, the modules in the system are self
describing so that the kernel can automatically discover
their input and output pins along with any user-settable
parameters. These features of the ROCI architecture
facilitate automatic service discovery since a module
running on one ROCI node can query the kernel
database to find out about services offered by modules
on other nodes and can connect to these services
dynamically.

The self describing behavior of module inputs,
outputs, and parameters is achieved automatically
through the use of the underlying type system. This is
an important element of ROCI’s ability to limit the
potential for developer error. In the process of
identifying necessary input and output pins, the module
developer naturally defines certain data structures that
the module takes as input and generates as output.
These data structures represent a form of design contract
that tells other users what type of input the module can
parse, and what type of output it generates. This
information is what the pin type system is built upon: a
particular type of pin is designed to transfer a particular
type of data. These types can then be used to verify
potential connections between pins. By relying on type
information that the developer necessarily creates by
designing module-appropriate data structures, we are
able to obviate the need for any separate developer-
generated description of a module’s inputs and outputs.
Such descriptions run the risk of becoming out of date,
and are not always easily checked. Relying on the type
system, however, means that if a module incorrectly
parses an input data structure, for example, it will not
compile. In this way we guarantee that if a Module
compiles, then it must be compatible with the associated
data description.

2.1. The Task Programming Model

The abstraction gained by treating modules as primitive
components allows us to bring compiler-level features to
bear on ROCI tasks. Specifically, the idea of type
checking the input/output connections between modules
has already been covered, but type checking the
parameters that govern the behavior of these modules is
also provided at the task level.

Individual module authors are able to decorate
class-scope variable declaration statements with
attributes that specify whether or not a variable is a
startup parameter, or even if it is a control parameter
that should be modifiable at run time. These attributes
are extracted from compiled code, and are used by the
ROCI to kernel to expose these variables when
appropriate.

Variables marked as startup parameters will be

displayed in the browser UI when a user wishes to start
a task. Type checking is performed as the user enters
new values for these parameters, thus making it far less
likely that a module will start with invalid parameters.
Furthermore, the type of the parameter can be used to
intelligently populate the parameter-setting UI by
dynamically creating UI elements such as drop-down
boxes with only valid values as options, as opposed to a
text field for every parameter. Variables marked as
control parameters (dynamic over the course of
execution) can be modified by another standard browser
interface. A running module can be selected, and any
variables marked as control parameters will populate a
parameter-setting UI similar to the one described for
startup parameters. This functionality, built atop the
strong type system in .NET, provides a compiler-like
layer of type checking at all phases of execution, while
simultaneously making the UI used to interact with a
ROCI deployment more intuitive for the end user.

2.2. General Instrumentation

The notion of task as program allows for varied
interesting forms of system-level instrumentation and
control. First, by sufficiently isolating individual
modules such that they can be treated as atomic
operations, we are able to treat tasks as programs built
on a language that uses the specified modules as
statements. Second, by virtue of its role as provider of

all inter-module communications, the ROCI kernel is
capable of rich monitoring and control of all data
transactions. These two points both deal with the notion
of program flow control.

 Program flow control is primarily controlled by the
sequence of operations specified in the program. In our
case, a schedule of modules makes up the procedural
part of a task program. As described above, a task is a
collection of concurrently running modules. The order
in which these modules run is not explicitly defined, but
instead is effectively governed by data dependencies
between modules. In general, if module alpha uses data
from module beta, then module alpha will block until
that data is available, thus creating a very loose schedule
in which each iteration of module alpha’s processing
loop is preceded by at least one iteration of module beta.
There are no guarantees on the efficiency of this
schedule; if only module alpha uses module beta’s
output, then it may be wasteful for module beta to run at
a higher rate than alpha.

 This issue is addressed by having a task schedule.
The task schedule merely specifies a linear sequence of
module iterations, but can be leveraged to obtain far
greater efficiency that a schedule governed solely by
dependency blocking. This schedule is specified in the
task XML file as a sequence of module names. The
names are checked when the task file is loaded to ensure
that all statements in the schedule are defined module
names. This schedule can be used simply to eliminate
wasted iterations of data producers, but it can also be
used to obtain non-obvious gains in overall program
efficiency. A schedule can include a bias to run a
particular module more frequently than another if it
would give the task, taken as a whole, greater efficiency.
Furthermore, since this schedule is not encoded in
compiled code, it is fully dynamic. That is, a user or
automated process can adjust a task’s schedule at
runtime to meet changing resource availability or
execution priorities.

 Such behavior is dependent on information. This
information is made available by the instrumentation
built into task schedules. The mechanisms that govern
the execution of a ROCI task are in good position to
monitor the iteration frequency of the task schedule in
its entirety, and the resources being used by individual
modules. This information can be used to raise alarms
when a task frequency drops below a specified
threshold, to throttle iteration frequency, or to modify

the schedule to make better use of available resources.
Furthermore, application specific efficacy metrics can
be utilized by task monitoring modules to initiate new
schedules to improve efficiency.

 The distributed nature of ROCI deployments
suggests a form of program flow throttling apart from
the usual method of CPU resource allocation: network
resource allocation. While the scheduling system can be
used to monitor and control the rate at which a task
schedule iterates, ROCI’s pin system can throttle
network communications on a connection-by-
connection basis. Individual pin connections can be
monitored to examine the type of data being transmitted,
the frequency of transmissions, and the bandwidth used.
Both the frequency of transmission and the overall
bandwidth used are controllable by the ROCI kernel.
This allows a controller, human or automated, to give
network precedence to certain connections, potentially
allowing greater system effectiveness with limited
resources. Note that by throttling network
communications, the speed at which a networked task
runs can be controlled. Especially in a schedule-free
execution environment, wherein a collection of modules
have their iteration frequencies mediated by data
dependencies, the throttling of individual connection
bandwidth can be used to control the iteration frequency
of individual modules. Thus there are two distinct
methods of controlling performance in an on-demand
fashion based on mediating CPU or network resource
allocation.

2.3. Logger Modules

Our sensor database [12], [10] system is implemented
on top of ROCI through the addition of logger modules.
These logger modules can be attached to any output pin
and record the outputs of that pin’s owner module in a
time-stamped log which can be accessed by external
processes. These logger modules appear to the system as
regular ROCI modules which means that they can be
started and stopped dynamically and can be discovered
by other ROCI nodes on the system. This last point is
particularly salient since it means that robots can learn
about the records available in other parts of the network
at run time as those resources become available. Since
logger modules can be attached to any output pin, there
is no meaningful distinction between “low level” sensor
data such as images returned by a camera module and
“high level” information such as the output of a position

estimation module. Any data that is relevant to a task
can easily be logged through the addition of a logger
module.

Figure 2. Time is a useful index for synchronizing data
concurrently collected from multiple sources.

The generic logger module logs all incoming data
based on time, an index relevant and meaningful
regardless of the data type (Figure 2). Additional
indexing methods that are specific to a particular data
type are easily implemented by creating a new type of
logger module that inherits from the general logger and
is explicitly usable only with the expected data type.
For example, a logger module that records the output of
a GPS unit may also support efficient indexing based on
position. Using time as a common key provides a
simple mechanism for correlating information from
different channels. Consider, for example, the problem
of obtaining all of the images that a robot acquired from
a particular position. This can be implemented
efficiently by first indexing into the GPS log to find the
times at which the robot was at that location and then
using those times to index the image log to pull out the
images taken from that vantage point. Using time as a
common index also eliminates the need for a fixed
database schema on the robots: different logger modules
can be added or removed from a node as needed without
having to perform complex surgery on a global table of
sensor readings. Since the logger processes do not
interact directly, they can be started and stopped, added
and removed independently of each other.

2.4. Query Processing

Once a relevant data log has been found on the network,
one must then face the problem of executing a query to
extract information from that archive. It is often the

case that the volume of data stored in a log makes it
unattractive to transfer the data over the network for
processing. In these situations we can take advantage of
the fact that the facilities provided by ROCI can be used
to support distributed query processing. Consider the
example of a UAV that stores a log of images acquired
as it flies over a site. If a process on a UGV wanted to
access this data to search for particular targets in the
scene, it would be impractical to transfer every image
frame to the ground unit for processing. Here it makes
sense to consider sending an active query to the UAV
requesting it to process the images and send the target
locations back to the UGV. This can be accomplished
by developing a ROCI module that extracts the targets
of interest from UAV imagery and then sending this
module to the UAV as part of a query. The ROCI kernel
on the UAV would then instantiate a task and use this
module to process the data in the image log returning
the results to the UGV.

Sophisticated queries that involve chaining together
the results of many processing operations or combining
information from several logs can be handled through
precisely the same mechanism. The query takes the
form of a network of ROCI modules that carry out
various phases of the query. The modules in this task
are distributed to appropriate nodes on the network and
the final output is returned to the node that initiated the
request. This approach allows us to dynamically
distribute the computation throughout the network in
order to make more efficient use of the limited
communication bandwidth.

Another feature of this approach is that it promotes
code re-use since the modules that are developed for
carrying out various data processing and analysis
operations online can also be used to implement queries
on stored data logs (Figure 3). This is important not just
by virtue of facilitating rapid development, but also by
the robustness and familiarity users have with the
component modules used in all aspects of a ROCI
deployment. By making the same framework pervasive
throughout the development pipeline, users are able to
concentrate their efforts on improving core techniques
because the code only needs to be written once. Once
the code has been written, users setting up robot
behaviors work from the same toolbox as those
formulating queries at run time and throughout post-
processing.

Figure 3. A ROCI query is, in many ways, very similar
to a real-time task. In many cases, the inputs of the task
come from live sensors, while the query gets data from
logs. This distinction is transparent to the component
modules.

The notion of query stages combined with the strong

type system underlying ROCI module inputs and
outputs immediately opens the door for a multitude of
queries that make use of functionality already used by
robot behaviors. For example, a robust localization
routine may be run on all robots as they move around
the environment. This routine must update relatively
quickly to allow the robot to navigate in real-time, thus
necessitating that it only consider readily available data.
However, a user or autonomous agent may require an
alternate estimation of a robot's location at a particular
time in the past, perhaps utilizing newly acquired data.
This can be achieved by designing a query wherein a
localization routine, possibly another instance of the
original routine, is connected to not only locally
collected data, but also to any number of data processing
routines, also specified by the query body, running on
any number of other nodes. This localization may take a
relatively long time to execute, and may not be suitable
for real time control, but it is available to any
programmed behavior or human operator that requests
it. This query, while complex, automatically benefits
from the shared toolbox provided by the consistent
design framework. Processing modules that already
exist on data hosts need not be transmitted, while others
are downloaded from peers on an as-needed basis. The
query itself is analogous to a behavior task: it specifies
processing modules and how they connect. The ROCI
kernel handles the work of ensuring that modules exist
on the nodes that need them, and that those modules are
properly connected.

By applying distributed database methods and

techniques, the architecture presented here frees
designers from having to create a static, all-
encompassing communications scheme capable of
satisfying a set of pre-specified query types. Instead,

individual developers are able to utilize all sensor
network resources in a modular, dynamic fashion
through the use of active distributed database queries.

3. APPLICATIONS

ROCI technology is being used throughout the GRASP
Lab to power a variety of robotics projects. The
structure supported by ROCI facilitates the design of
complex single-platform systems, high-performance
real-time behaviors, and relatively simple static sensors.
Projects such as the Smart Wheelchair utilize ROCI to
organize and make sense of the data collected by dozens
of sensors on a single mobile platform. Teams of small
truck-like robots (Clodbusters) use ROCI for everything
from collaborative error minimization to vision-based
obstacle avoidance. Even a fixed camera becomes far
more useful when plugged into a computer running
ROCI. ROCI immediately provides logging capabilities
as well as the ability to expose the camera’s data stream
to the network. Teams of ROCI-powered vehicles made
up of Clodbusters, fixed wing UAVs, and an
autonomous blimp have been successfully fielded in
exploration and navigation experiments under adverse
network conditions as part of the DARPA-funded
MARS2020 program.

Current database-related work involves visualization
and exploitation of data generated by a heterogeneous
team of ground and air robots equipped with cameras,
GPS receivers, IMU readers, altimeters and other
sensors. For visualization purposes, this data can be
fused in an on-demand fashion through visualization
modules a human operator can interact with. In this
way, one can quickly bring up images taken by a UAV
flying over a particular location by joining a GPS log
with an image log over a time index. Of note is what
data is sent over the network to meet a particular
demand. To minimize network usage, one might use a
map location selected by the user to index into a GPS
log to see when the robot was at the desired location, if
it ever was. The resultant time indices can be used to
index into the image database, thus avoiding the need to
transfer unnecessary images.

An alternate formulation of this scenario that still
maintains network efficiency, while improving usability,
is to obtain the time indices of all images taken within
some timeframe. These indices can be used to index
into the GPS log to present the user with a map marked

up with the locations where pictures were taken. The
user can select one of these locations, thus providing the
database system with a time index to use in obtaining a
particular image. This solution exploits the fact that
both time indices and GPS data are far more compact
than image data. The goal is to transmit as narrow a
subset of the largest data log, in this case the image log,
as possible. This setup is what is used at the GRASP
Lab to intuitively scan data collected during a team
operation.

A behavior-oriented application of the logging

functionality can be found in a mobile target acquisition
behavior. In this scenario, periodically placed overhead
camera nodes log their image data which is made
accessible to mobile robots when a network route to the
camera node exists. Given a piece of code for visually
identifying a target, a mobile robot can move to within
routed radio range of overhead camera nodes and inject
the target identification code as part of an image log
query. The results of this query can simply be the time
indices when the target was visible to the overhead
camera. This information can be used to improve the
efficacy of visual target searches – an extremely data-
intensive process -- while minimizing the burden placed
on the network. Under lab conditions, a two-node
network, using a technology based on 802.11b ad-hoc
networks, may be expected to manage 300KB/sec data
transfer rates. This would mean that a single,
uncompressed 1024x768 color image (2.25MB) would
take over 7 seconds to transfer. While compression can
greatly help, any resultant artifacts could cripple the
effectiveness of a given processing algorithm.
Regardless, a factor of 10 gained in compression is more
than lost when faced with an image log of thousands of
images. Compare this to the 20-50KB size of a typical
ROCI module DLL, and it is clear that transferring the
code rather than the data often presents considerable
advantages.

4. EVALUATION

The primary benefit of ROCI is the development
process it suggests. Developing high level applications
from reusable, modular components is a well-
understood concept, but one whose acceptance has faced
real difficulties as popular programming technologies
have not kept up with the requirements of modern
design techniques. ROCI represents an attempt to push
the field forward by taking full advantage of powerful

hardware as well as relatively modern programming
techniques such as object-oriented programming and
strong type systems. By building consistent support for
the type system into our high level framework we have
successfully allowed loosely structured development
teams to collaborate on large-scale projects with more
reliable results than is usual. The task-module-pin
design structure encourages engineers without strong
computer science backgrounds to contribute to larger
projects without having to worry about their lack of
understanding of the underlying system. Most
developers concentrate on the specifics of what their
module does, not how it fits into a larger system, or how
any of the internal mechanisms – such as scheduling,
communications, or user interface – work.

4.1 Related Work

 Similar systems exist for other application
scenarios. TinyOS is an open-source effort to provide
OS-level support for sensor platforms with extremely
limited hardware. In fact, the fundamental design
concepts of TinyOS and ROCI have much in common,
primarily the encouraging of modular software design
[1]. However, TinyOS specifically targets limited
hardware platforms, which imposes limits on what can
be attempted with it. We have chosen to target much
more capable hardware – we use consumer-level laptop
computers on many of our robots – and we are therefore
able to distance ourselves from many of the difficulties
faced by the mote programmer.

 Distributed computing infrastructures that target
more powerful hardware can also be found. Several
Grid computing efforts are making large strides towards
harnessing the computational power of thousands of
computers over the Internet [3]. These efforts tend to be
of a much more general slant than what we have
undertaken. We have found that by focusing on the
needs of our developers, we are better able to define
constraints on the development process that significantly
improve reliability. While the event-based pin
communications infrastructure ROCI employs works
well for sensor platforms exchanging data, it is not
necessarily optimal for all computing needs. Further,
we do not provide any tools for automating the
distribution of a single computation over a very large
network.

 Sun’s Jini system for Java is an architecture that
attempts to bridge the gap between embedded systems
and services running on general purpose computers [2].
While this system boasts many of the same benefits as
ROCI, we feel that it requires somewhat more effort on
the part of the developer to make use of. The simplest
ROCI deployments involve minimal usage of ROCI API
calls. There is a template module that an author fills
out, and then each pin connection in a task is specified
in one line of XML. This type of deployment is an
example of how the ROCI kernel is designed to handle
most common usage patterns with minimal developer
action.

4.2 Final Words

 The ROCI system is evidence that a strong type
system paired with solid software design fundamentals
can yield substantial improvements in software
reliability, reuse, and ease of use. While still primarily
used in robotics efforts, projects that seek to stretch
ROCI design methods in new directions, such as limited
hardware devices and schedule optimization, are now
underway. By defining the ROCI kernel itself in a
modular fashion with well-defined interfaces, we are
able to extend the offered functionality, usually without
breaking backwards compatibility. This extensibility,
both in terms of novel task-level applications and kernel
extensions, is a validation of the design methods
presented above.

5. REFERENCES

[1] Philip Levis, Sam Madden, David Gay, Joe Polastre,
Robert Szewczyk, Alec Woo, Eric Brewer and David
Culler, “The Emergence of Networking Abstractions
and Techniques in TinyOS,” Proceedings of the First
USENIX/ACM Symposium on Networked Systems
Design and Implementation (NSDI 2004).

[2] Jim Waldo, “The Jini Architecture for Network-
centric Computing,” Communications of the ACM, pp.
76-82, July 1999.

[3] R. Bramley, K. Chiu, S. Diwan, D. Gannon, M.
Govindaraju, N. Mukhi, B. Temko, and M. Yechuri, “A
Component Based Services Architecture for Building
Distributed Applications,” In Proc. 9th IEEE
International Symposium on High Performance
Distributed Computing, Pittsburgh, PA, Aug. 2000.

[4] R. Alur, A. Das, J. Esposito, R. Fierro, G. Grudic,
Y. Hur, V. Kumar, I. Lee, J. Ostrowski, G. Pappas,
B. Southall, J. Spletzer, and C. Taylor, “A framework
and architecture for multirobot coordination,” In
D. Rus and S. Singh, editors, Experimental Robotics
VII, LNCIS 271. Springer Verlag, 2001.

[5] Sarah Bergbreiter and K.S.J. Pister, “Cotsbots: An
off-the-shelf platform for distributed robotics,” In IROS,
pp. 1632, October 2003.

[6] Luiz Chaimowicz, Anthony Cowley, Vito Sabella,
and Camillo J. Taylor, “Roci: A distributed framework
for multi-robot perception and control,” In IROS, pp.
266, 2003.

[7] A. Das, J. Spletzer, V. Kumar, and C. J. Taylor, “Ad
hoc networks for localization and control,” Proceedings
of the IEEE Conference on Decision and Control, 2002.

[8] I. Foster, C. Kesselman, and S. Tuecke, “The
anatomy of the grid: Enabling scalable virtual
organizations,” International Journal of Supercomputer
Applications, 15(3), 2001.

[9] A. Cowley, H. Hsu and C.J. Taylor, “Distributed
Sensor Databases for Multi-Robot Teams,” Proceedings
of the 2004 IEEE Conference on Robotics and
Automation (ICRA), April 2004.

[10] Joseph M. Hellerstein, Wei Hong, Samuel Madden,
and Kyle Stanek, “Beyond average: Towards
sophisticated sensing with queries,” In Information
Processing in Sensor Networks, March 2003.

[11] D. MacKenzie, R. Arkin, and J. Cameron,
“Multiagent mission specification and execution,”
Autonomous Robots, 4(1): pp. 29-52, 1997.

[12] Samuel R. Madden, Michael J. Franklin, Joseph
Hellerstein, and Wei Hong, “The design of an
acquisitional query processor for sensor networks,” In
SIGMOD, June 2003.

[13] D. Martin, A. Cheyer, and D. Moran, “The open
agent architecture: a framework for building distributed
software systems,” Applied Artificial Intelligence,
13(1/2): pp. 91-128, 1999.

